
 

     

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 4, Issue 3 Mar 2022,   pp: 868-886 www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-0403868886       Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal   Page 868 

A dynamic spatial model estimation of the 

effects of energy usage, spatial spillover of 

CO2 emissions and exports on CO2 

emissions in Africa 
 

Emmanuel Owusu1, Li Fanglin1, Nelly Ataawomba Afuubi1, 

Emmanuel Sogbou Kenne2, Michael Verner Menyah3 
1 
School of Finance and Economics, Jiangsu University, Zhenjiang 212013, P.R China 

2
School of Transportation, East China Jiaotong University, 808 Shuanggang new development Zone, China

 

3
School of Management, Jiangsu University, Zhenjiang 212013, P.R China

 

-------------------------------------------------------------------------------------------------------------------------------------- 

Submitted: 10-03-2022                                    Revised: 21-03-2022                                    Accepted: 25-03-2022 

--------------------------------------------------------------------------------------------------------------------------------------- 
ABSTRACT 

Many energy-climate policies throughout the world 

have made net-zero CO2 emissions an explicit goal. 

To achieve this aim, high-income countries must 

dramatically reduce their emissions while also 

obviating large increase in emissions in lower and 

low economies. However, most studies concentrate 

on emissions reductions in high income countries, 

with little attention paid to lower and low 

economies. The present study analyses the spillover 

effect of CO2, effects of exports, and energy usage 

on CO2 emissions in Africa using the dynamic 

spatial Durbin model. The Hausman test was again 

performed to determine  the choice between the 

random effects and the fixed effects. The results 

indicated the existence of spatial spillover effect of 

CO2emissions among some countries in Africa. 

The findings suggest that increasing both exports of 

goods and energy consumption in a focal country, 

turns to increase the country’s own CO2 emissions 

and also increases the emissions of its adjacent 

countries. Comparing the direct effect from the 

dynamic SDM effects to the SDM effects revealed 

that exports of goods a variation of 0.085%. The 

results further confirmed an inverted U-shaped 

between emissions of CO2 and GDP. Finally, 

expotrs and energy consumption have a positive 

and significant total effects on CO2 emissions. 

Based on the findings obtained, a set policies 

implications was suggested.  

Keywords: Energy consumption, Exports, 

Economic growth, CO2 emissions, Dynamic Spatial 

econometric model, Africa. 

 

I. INTRODUCTION 

  Carbon dioxide (CO2) emissions are said 

to be the primary contributor of Greenhouse 

emissions (GHG) [1, 2]. The global emissions of 

GHG were said to attain an approximate 49.0 

gigatons of CO2 equivalent in 2016, and currently, 

CO2 accounts for roughly 73% of the total GHG 

emissions, an increase of 8% since 1970 [2, 3]. 

Despite the fact that CO2 is an important 

constituent of the ecosystem, its excessive assiduity 

in the atmosphere, together with other GHG 

emissions, causes pollution and global warming, 

leading to environmental degradation and climate 

change [4]. [5]inquired into possibilities for future 

global warming and CO2 emissions and they 

revealed that global temperature would climb more 

than 4 degrees Celsius by the year 2100. Thus, the 

share of CO2 emissions to global pollution keeps 

increasing hence, the need of discovering the 

contributing factors for this rise in CO2 emissions is 

essential [6]. 

 Understanding the contributions of Africa 

to global anthropogenic CO2 emissions is a crucial 

measure in reducing atmospheric GHGs. Africa’s 

economy is dominated by Developing Countries 

(DC’s) and Least Developed Countries (LDC’s) 

with a population of 1.3 billion people [7]. Africa 

accounted for about 4% of global CO2 emissions in 

2017, with the lowest CO2 emissions intensity of 

34.9 tCO2/TJ and CO2 emissions per capita of 0.9 

TCO2/capita when compared to all other area of the 

world [8]. Nevertheless, Africa’s CO2 

emissions/GDP at 0.5 kgCO2/$ were higher than all 

other regions, with the exception of Asia which had 

0.6 kgCO2/$ [9]. Oil discoveries in Africa waxed 

emissions by 0.9 percent per year on an average 

between 1990 and 2017, led by oil-rich countries 
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such as Nigeria, Angola, Lybia, Egypt. Though, 

most African countries are presently considered as 

low emitters, they could turn large producers of 

CO2 emissions as a result of the discovery of oil 

(Nanibia, Cote d’ivore, Ghana, and Gabon) [10, 

11]. Consequently, CO2 emissions in Africa in the 

next decade could be significantly climb 

exponentially. Figure 1 depicts the outline of the 

boundaries of the countries in the study. 

 The factors that contribute to the 

increment of CO2 emissions have thoroughly been 

investigated, with majority of the studies focusing 

on the environmental Kuznets curves (EKC) 

hypothesis, that is the effect of economic growth 

(GDP) on CO2 emissions [12, 13]. In accordance 

with this hypothesis, the early phases of economic 

development, which includes industrialization, 

results in heightening the level of CO2, whereas at 

the later stages of economic development, which 

include knowledge-based products and 

restructuring toward service, which results in lessen 

CO2 emissions.  

Energy usage is considered as another 

factor that has an effect on CO2 emissions [14].  In 

actuality, energy consumption increases economic 

opportunities and improves the industrial sector all 

of which contribute to urban change. Since energy 

is a necessary input in the cumulative production 

process, economic growth has been linked to 

energy usage. However, the association of CO2 

emissions with energy consumption cannot be 

written off. The Neoclassical Economics Theory 

positions that demand and supply in the energy 

market are the impulsive force derrierre energy 

pricing, consumption, and production [15]. As a 

result, increased energy prices will correspond to 

lower energy usage and, as such lower CO2 

emissions.Furthermore, a higher energy price 

implies a greater degree of energy scarcity, which 

advocates the replacement of expensive energy 

sources for less expensive ones, thus, regulating the 

energy supply [16].  Thus, it is critical to identify 

the effect of energy consumption in Africa in order 

to design sustainable growth policies for the 

continent, and also aid to the debate over the use of 

fossil fuels and reduce climate change. 

Another significant determinant of CO2 

emissions is exports of goods [17]. Some recent 

researches have looked into the connection between 

energy usage, CO2 emissions, and exports of goods 

[18, 19]. This is due to a significant increase in 

international trade of goods, service and capital 

over the last two decades. The percentage of 

international trade of Africa to the world has 

climbed by nearly 3%, this astonishing expansion 

in trade has made the Africa economy more reliant 

on it, with it share of global GDP increasing by 

3.7%  from 2017 [20]. It is common knowledge 

that trade cannot take place without transportation. 

As a result, transportation plays a critical role in 

international trade. Despite its importance in 

international trade, the transportation sector 

consumes a significant amount of energy and 

pollutes the environment [21]. As a result, there 

may be a link between trade, CO2 emissions, and 

energy usage. Furthermore, studies on the 

relationship between energy usage and CO2 

emissions and trade are scarce [22, 23]. The 

outcomes of these studies are mixed. [24] stated 

that exports have a favorable long term-term and 

short-term influence on CO2 emissions during their 

work in new industrialized countries. The study by 

[25] revealed that exports has a negative impacts of 

CO2 emissions only in the short run, while 

Aghasafari, Aminizadeh (26), also posit that 

exports has no significant impact on CO2 emissions 

in MENA countries. 

From the above studies, it was evidenced 

that most of them focused on the causative 

relationship among exports, CO2 emissions, and 

energy consumption. As a result, this study 

contributes to literature in three ways; Firstly, 

unlike previous studies in Africa, this study 

inquires the non-linearity amongst CO2 emissions 

and economic growth and exports of goods, this 

non-linearity provides more illumination to this 

relationship as mixed results (negative and 

positive) was obtained by previous studies. 

Secondly, the study analyzed how the effects of 

CO2 emissions in a local country affect neighboring 

countries. It is common knowledge that sovereign 

nations with land border restrictions still have 

unrestricted spatial interaction. Validating the 

spatial dependency of CO2 emissions acquaints 

crucial policy resolutions in terms of international 

organizations centering on CO2 emissions, hence 

this analysis is necessary. Thirdly, the study 

incorporates the spatial econometric models in 

evaluating the emissions of CO2 and its 

determinants, thus, the study annuls the bias that 

comes with traditional panel estimations 

approaches like; fixed effect approach, AMG 

estimation, and FMOLS/DOLS estimation. Thus, 

this study may possibly provide deep insight into 

how energy pricing could be used in formulating 

policies to make the continent's CO2 emissions 

neutral.  
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Figure 1: Outline of the boundaries of the African countries included in the model 

 

II. METHODOLOGY 
1.1 Model Specification 

        Following studies such as [27, 28], the 

multivariate framework for this study to unveil the 

effects of the explanatory variables on CO2 

emissions in Africa was given as;   

𝐿𝑛𝐶𝑂2𝑖 ,𝑡 = 𝑓( 𝐸𝑁𝐺𝑖 ,𝑡  ,𝐸𝑋𝑃𝑖 ,𝑡 , 𝐺𝐷𝑃𝑖 ,𝑡 ,𝑈𝑅𝐵𝑖 ,𝑡) 
     

     

  (1) 

Where 

𝐸𝑁𝐺𝑖 ,𝑡 , 𝐸𝑋𝑃𝑖 ,𝑡 , 𝐺𝐷𝑃𝑖 ,𝑡 , 𝑈𝑅𝐵𝑖 ,𝑡 , 𝐶𝑂2𝑖 ,𝑡  represent 

energy consumption, exports of goods, economic 

growth, urbanization and CO2 emissionsof country 

𝑖in year 𝑡, respectively. The study implements the 

dynamic spatial panel model to unwrap the spatial 

and dynamic effects, which may allow us to 

accredit the disequilibrium shocks the factors 

(ENG, EXP, GDP, URB) to CO2 emissions through 

Spatio-temporal lags and temporal. Thus, the fixed 

effects from the dynamic spatial panel model for 

the study is as follows; 

𝐿𝑛𝐶𝑂2𝑖 ,𝑡 = 𝛼𝑖 + 𝜏𝐿𝑛𝐶𝑂2𝑖 ,𝑡−1 + 𝜌 𝑊𝑖𝑗𝐿𝑛𝐶𝑂2𝑖 ,𝑡

𝑁

𝑗 =1

+ 𝛽1𝐿𝑛𝐸𝑁𝐺𝑖 ,𝑡 + 𝛽2𝐿𝑛𝐸𝑋𝑃𝑖 ,𝑡 + 𝛽3𝐿𝑛𝐺𝐷𝑃𝑖 ,𝑡 + 𝛽4𝐿𝑛𝑈𝑅𝐵𝑖 ,𝑡

+ 𝛾1  𝑊𝑖𝑗𝐿𝑛𝐸𝑁𝐺𝑖 ,𝑡

𝑁

𝑗 =1

+ 𝛾2  𝑊𝑖𝑗 𝐿𝑛𝐸𝑋𝑃𝑖 ,𝑡

𝑁

𝑗=1

+ 𝛾3  𝑊𝑖𝑗 𝐿𝑛𝐺𝐷𝑃𝑖 ,𝑡

𝑁

𝑗=1

+ 𝛾4  𝑊𝑖𝑗𝐿𝑛𝑈𝑅𝐵𝑖 ,𝑡

𝑁

𝑗 =1

+ 𝜋𝑖𝑡  
              (2) 

𝜋𝑖𝑡 = 𝜗 𝑊𝑖𝑗 𝜋𝑖𝑡

𝑁

𝑗=1

+ 𝑒𝑖𝑡  

Thus, the model in Eq. 2 comprises three spatial impacts characteristics; 

(a) endogenous spatial impacts; 

 

 𝑊𝑖𝑗𝐿𝑛𝐶𝑂2𝑖 ,𝑡

𝑁

𝑗 =1

 

(b) exogenous spatial impacts; 
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 𝑊𝑖𝑗 𝐿𝑛𝐸𝑁𝐺𝑖 ,𝑡

𝑁

𝑗=1

,  𝑊𝑖𝑗 𝐿𝑛𝐸𝑋𝑃𝑖 ,𝑡

𝑁

𝑗=1

,  𝑊𝑖𝑗 𝐿𝑛𝐺𝐷𝑃𝑖 ,𝑡

𝑁

𝑗=1

,  𝑊𝑖𝑗𝐿𝑛𝑈𝑅𝐵𝑖 ,𝑡

𝑁

𝑗 =1

 

and,  

(c) residual spatial impacts; 

 

𝜗 𝑊𝑖𝑗𝜋𝑖𝑡

𝑁

𝑗 =1

 

Where the fixed parameter is given by 𝛼𝑖 , 

the coefficients for the spatial effects are given by 

𝜌, 𝛽 𝑎𝑛𝑑 𝜗. 𝑒𝑖𝑡  is the estimated residual term being 

normally distributed 𝑁(0, 𝜍𝑒
2) and identically 

independently distributed (𝑖𝑖𝑑). The spatial weight 

is given by 𝑊𝑖𝑗  for 1 < 𝑖, 𝑗 < 𝑁 of a pre-assigned 

row-standardized, non-negative distance function 

spatial weight matrix 𝑊[29]. Thus, these three 

spatial interactions cannot be embedded in one 

model at the same time due to parameter estimation 

requirements [30]. As a result of these spatial 

interactions, three simple spatial panel data models 

could be extracted from the model (2) [31, 32]; (a) 

the spatial Durbin model (SDM), incorporates 

spatial exogenous and endogenous interactions 

(𝜍 = 0), and it given by equation; 

𝑦𝑖𝑡 = 𝜌 𝑊𝑖𝑗 𝑦𝑖𝑗

𝑁

𝑗=1

+ 𝛽𝑥𝑖𝑗 + 𝜇𝑖 + 𝜗 𝑊𝑖𝑗𝜋𝑖𝑡

𝑁

𝑗=1

+ 𝑒𝑖𝑡  

             (3) 

  (b) Secondly, the spatial autoregression model (SAR), which takes into account endogenous spatial effects 

(𝛾 = 0  𝜍 = 0). Thus, its specific equation is given by; 

𝑦𝑖𝑡 = 𝜌 𝑊𝑖𝑗𝑦𝑖𝑗

𝑁

𝑗 =1

+ 𝛽𝑥𝑖𝑗 + 𝜇𝑖 + 𝜖𝑖𝑡  

            (4) 

(c) lastly, the SEM, known as the spatial error model which delimitate a spatial interaction of the error term 

(𝛾 = 𝜌 = 0), thus, also given by the equation; 

 

𝑦𝑖𝑡 = 𝛽𝑥𝑖𝑡 + 𝑢𝑖 + 𝜋𝑖𝑡

𝜋𝑖𝑡 = 𝜗 𝑊𝑖𝑗 𝜋𝑖𝑡 + 𝑒𝑖𝑡

𝑁

𝑗=1

  

             (5) 

Thus, the static spatial panel models include these three simple spatial models. These three models 

could, however, be altered to dynamic spatial panel models by the addition of temporal-spatial lag constituents 

to the response variable. The study employed the dynamic spatial Durbin error model (SDM). The SDM 

provides reliable and unbiased estimates and also increases the explicatory power of the explanatory variables 

on the response variable [30, 31]. The dynamic SDM is given as;  

𝐿𝑛𝐶𝑂2𝑖,𝑡 = 𝛼𝑖 + 𝜏𝐿𝑛𝐶𝑂2𝑖,𝑡−1 + 𝜌 𝑊𝑖𝑗𝐿𝑛𝐶𝑂2𝑖 ,𝑡

𝑁

𝑗 =1

+ 𝛽1𝐿𝑛𝐸𝑁𝐺𝑖 ,𝑡 + 𝛽2𝐿𝑛𝐸𝑋𝑃𝑖 ,𝑡 + 𝛽3𝐿𝑛𝐺𝐷𝑃𝑖 ,𝑡 + 𝛽4𝐿𝑛𝑈𝑅𝐵𝑖 ,𝑡

+ 𝛾1  𝑊𝑖𝑗 𝐿𝑛𝐸𝑁𝐺𝑖 ,𝑡

𝑁

𝑗 =1

+ 𝛾2  𝑊𝑖𝑗 𝐿𝑛𝐸𝑋𝑃𝑖 ,𝑡

𝑁

𝑗=1

+ 𝛾2  𝑊𝑖𝑗𝐿𝑛𝐺𝐷𝑃𝑖 ,𝑡

𝑁

𝑗 =1

+ 𝛾3  𝑊𝑖𝑗 𝐿𝑛𝑈𝑅𝐵𝑖 ,𝑡

𝑁

𝑗=1

+ 𝑒𝑖𝑡  
             (6) 

As a result of the subsistence of 

endogenous impacts, the traditional OLS 

estimation approach will produce skewed and 

discrepant results. Thus, to solve this challenge and 

accurately forecast the dynamic SDM, the study 

followed the work of  [33] and use the quasi-

maximum likelihood (QML) method instead of the 

traditional OLS method. 

 

1.2 Spatial correlation test 

 The study used the Moran’s I in 

evaluating the spatial correlation if country-level 

𝐶𝑂2 in Africa is geographically dependent [27, 28]. 

The construction of the Moran’s I as defined by 

Moran (34) is given below; 
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𝑀𝑜𝑟𝑎𝑛′𝑠 𝐼 =
𝑛  𝑊𝑖𝑗

𝐴𝑛
𝑗 =1  𝑍𝑖 − 𝑍  𝑛

𝑖=1 (𝑍𝑗 − 𝑍 )

(  𝑊𝑖𝑗
𝐴𝑛

𝑗=1
𝑛
𝑖=1 )  (𝑍𝑖 − 𝑍 )2𝑛

𝑖

 

     

     

  (7) 

 Where the adjacent space weight matrix 

is represented by 𝑊𝑖𝑗
𝐴, number of countries is n, 𝑍𝑖  

represent the attribute value of the variables (𝐶𝑂2, 

energy consumption and exports) in-country 𝑖, and 

𝑍𝑗  represent the ascribe value of the variable (𝐶𝑂2, 

energy consumption and exports) in-country 𝑗. 𝑊 

is defined as fist-order rook adjacency in this study 

(Matrix of queen contiguity). In Moran I’s 

evaluation, the 𝑍-score is commonly used to 

determine its importance, the 𝑍-score is given by; 

𝑍 =
𝐼 − 𝐸(𝐼)

 𝑣𝑎𝑟(𝐼)
 

 To ascertain the best model that fits the 

data, the non-spatial fixed models were fixed 

estimated by using the likelihood ratio test (LR). 

The spatial autocorrelation test of residual error and 

its robustness followed using the Lagrange 

multiplier (LM) test to ascertain which fixed effect 

must be included [35]. The LM tests are typically 

employed to ascertain coherent estimates for the 

test spatial autocorrelation residual error [29]. 

Secondly, the selection of the best model between 

SAR, SDM, or SEM models was based on the 

Wald and LR test results. The null hypothesis for 

the Wald test (𝐻0: 𝛾 = 0) was used to assess 

whether or not the SDM is most suitable to SAR, 

against its null hypothesis of the LR test (𝐻0: 𝛾 +
𝜌𝛽 = 0), which assesses the suitability of the SDM 

to the SEM model [36]. The chi-square distribution 

was used in both tests. If both hypotheses are 

declined, thus, the SDM model is the most suitable 

model. The acceptance of the first hypothesis 

implies the use of the SAR model, while the 

acceptance of the second hypothesis connotes the 

suitability of the SEM model. 

 

III. EXPLORATORY DATA ANALYSIS 
1.3 Data and Descriptive statistics 

To divulge the impacts of energy 

consumption, exports, economic growth, and and 

spatial factors on CO2 emissions in Africa, the 

study employed a balanced data from 35 countries 

from 1996 to 2018. All data were extracted from 

the world bank database, with the CO2 emissions 

extracted from Air Quality Index. Table 1 presents 

the variables employed, their definition and 

abbreviation. The natural logarithm was applied to 

the employed variables, so to explicate the obtained 

coefficients as elasticities.The descriptive statistics 

of the employed variables are presented in Table 1. 

From Table 2, it was evidenced that a strong 

relationship among the independent variables does 

not exist since the coefficient correlation among all 

the variables was seen to be less than 0.7. As a 

result, each explanatory variable had a distinct 

effect on the dependent variable. 

 

TABLE 1 

TABLE 2 

1.4 Cross-section dependence test, and 

distrbution of variables 

The study further assessed the unit root of 

the variables using the second generations (CIPS 

and CADF) panel unit root tests before moving on 

to the empirical examination. From the stationary 

test in Table 3, it was observed that some variables 

were I (0) at level, however, they all turned to be I 

(1) after the first difference. Figure 2, Figure 3, and 

Figure 4 depicts the concentrations of CO2 

emissions, the range of exports, and energy usage 

in 1996 and 2018 for the selected African 

countries.   
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TABLE 3 

 

 
 

 
 

FIGURE 2: CO2 emissions in Africa for the years 1996 and 201 
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FIGURE 3: Exports of goods and services in Africa for the years 1996 and 2018 
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                                   FIGURE 4: Energy consumption in Africa for the years 1996 and 2018 

 

IV. EMPIRICAL RESULTS AND 

DISCUSSION 
1.5 The Spatial autocorrelation assertion 

 Prior to the estimation of the spillover 

effect of energy consumption and exports on 

𝐶𝑂2emissions, the spatial autocorrelation of 

Ln𝐶𝑂2was screened to assess whether a country’s 

𝐶𝑂2emissions influences the neighboring countries. 

This was done by using the Moran’s I assessment 

and the Local Indicators of Spatial Association 

(LISA) analytical tool. The Moran’I assessment for 

the countries selected is presented in Table 4, the 

index revealed a value greater than 1.5. As a result, 

𝐶𝑂2emissions have a geographical autocorrelation. 

Furthermore, the Moran’s plots for the years 1996, 

2003, 2010, and 2018 were assessed as shown in 
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Figure 5 to further explore the spatial 

autocorrelation. Consequently, The LISA map 

(Figure 5) indicates that 𝐶𝑂2emissions obtained a 

significant local spatial agglomeration impact, in 

countries such Algeria, South Africa and Nigeria 

obtaining a High-High pattern (H-H), whereas 

countries like Lybia and Morocco had a Low-High 

pattern (L-H) for the years 1996 and 2003. For the 

years 2010 and 2018, Algeria and Nigeria 

obtaining a High-High pattern (H-H), Lybia and 

South Africa observed a high-Low (H-L) spatial 

agglomeration impact, whereeas Morocco had a 

Low-High pattern (L-H).  

 

TABLE 4 
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Figure 5: Scatter plot for the Moran I’s index in Africa for the years 1996, 2003, 2010, and 2018 
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Figure 6: LISA plots for CO2 emissions in Africa for the years 1996, 2003, 2010, and 2018 
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1.6 Non-Spatial panel model  

As a result of considerable spatial 

autocorrelation, the study used non-spatial panel 

model in probing the existence of spatial 

dependency across spatial units using traditional 

Lagrange multiplier test before creating the spatial 

model for the influence of exports and energy 

usage on 𝐶𝑂2emissions. The rejection of the non-

spatial models indicates that the spatial model must 

be used to captivate the spatiality via the processes 

outlined in section 2.2. The non-spatial results are 

revealed in Table 5. The geographic dependence 

variable was examined through the LM and its 

robust tests. The results revealed that all the four 

types of fixed effects affirm at a 1% significance 

level the spatial lag model. The pooled effects 

spatial and time-fixed effects, and the error and its 

robust spatial lag LM tests with time effects were 

significant.  

As a result, the findings refute the hypothesis that 

spatial dependency does not exist, thus, confirming 

the existence of spatial correlation. The null 

hypothesis that time effects and spatial fixed effects 

was rejected by the LM test at a 1% significance 

level, revealing the importance of introducing 

spatial dependency elements, as well as justifying 

the model’s extension to include time period fixed 

effects and space-fixed effects.    

TABLE 5 

1.7 Spatial Durbin model 

 Relying on the LR test and Wald test, the 

selection between the SAR, the SDM, or the SEM 

was done. At a 1% significance level, the Wald test 

(47.01,𝐷𝐹 = 25,𝑃 = 0.000) points that the SDM 

model is more suitable to the SAR. Likewise, the 

LR test (33.83,𝐷𝐹 = 25, 𝑃 = 0.000), rejected the 

suitability of the SEM model, thus it was concluded 

that the SDM model is more convenient. The 

Hausman test was also performed to ascertain the 

best model between the random effects and the 

fixed effects. Table 6, indicates that at a 1% 

significance level, with the Hausman test 

(112.69,𝐷𝐹 = 31), the fixed-effect model is more 

appropriate in explaining the estimates. From Table 

6, it could be seen that with a 0.8327 goodness-of-

fit and a log-likelihood value (123.806), the 

spatial fixed effect model (column 2) surmount the 

other models. As a result, the interpretations will be 

restricted to its coefficients.  

 The coefficient of the spatial lagged 

component of the response variable was significant 

and positive, indicating that 𝐶𝑂2emissions from the 

surrounding countries have a positive impact on the 

focal 𝐶𝑂2emissions. This outcome is in line with 

the Moran I’s plots and the spatial autocorrelation 

LR test in Table 4. This result shows that a 1% rise 

in an average 𝐶𝑂2emissions of the surrounding 

countries tend to increase the level 𝐶𝑂2of the focal 

county by 0.201%. This value suggests that 

countries with standardized air pollution tend to 

cluster together. As a result of the geographical 

autocorrelation, the estimates for the explanatory 

variables from the SDM model can’t be stated as 

marginal effects and can’t effectively capture the 

spatial spillover effect of 𝐶𝑂2emissions. Thus, to 

measure the impact of the explanatory variable and 

their spatial spillover on 𝐶𝑂2emissions, the study 

relies on the indirect, direct, and total effects. 

TABLE 6 

1.8 The estimates of direct, indirect, and 

total effects of SDM model 

Table 7, reveals the decomposition of the 

indirect and direct effects from both the SDM and 

dynamic SDM models. The estimates' direct effects 

from the dynamic SDM models are very closed to 

the matching to the spatial fixed effects, indicating 

that the estimates are consistent and effecacious. 

However, the existing deviation in values is due to 

the existence of feedback effects which egest from 

adjacent countries and backward to the countries 

themselves. This is contained the estimates from 

the spatially lagged explanatory variables 

( 𝑊𝑖𝑡𝑋𝑖𝑡𝛾 ).  

The weight of exports exerted on CO2 

emissions was identify to be positive and 

statistically significant in both the dynamic SDM 

and SDM models. To be more specific, based on 

the dynamic DSM estimates, a 1% increment in 

trade has the possibility of increasing CO2 

emissions by 0.111% in a the focal country. The 

possible inference that could be made on the 

positive impact of exports on CO2 emissions is that 

free trade among the African countries has positive 

environmental outcomes due to the technique, 

effects of scale, and composition. This free trade 

has helped expand the trading partners of the 

economies either geographically close trading 

partners or far. Generally, trade has a positive 

impact on the environment through economic 

growth. Due to the scale effect of enhancing energy 

consumption, economic growth usually has a 

positive effect on the environment at the betimes 

stages of development.Since more focus is directed 

on economic growth instead than pollution control 

in the early stages of development, the scale effect 

shows that pollutants emissions are raising as a 

result of increasing energy usage and economic 

activity. Whereas for the indirect effect, a 1% 

percent increase in exports in the neighboring 

countries turns to positive 𝐶𝑂2 emissions by 

0.045% in the target country. Thus, in its total 

effect, a rise in exports will correspond to a 
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positive in the levels 𝐶𝑂2 by 0.156 in the local 

country. Due to spatial aggregation, the direct 

effect of exports (0.111) compared to the fixed 

effect model in the SDM was 0.127, revealing a 

feedback effects which amounts to 0.144 or 

14.144%  of the direct effect. These findings 

indicate that heightening a country’s own exports 

increases emissions of 𝐶𝑂2 in its adjacent countries 

and its own territory. The provided results propose 

that exports has a positive and substantial impact 

on the 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑜𝑓 𝐶𝑂2, thus, exports had a 

increasing effect on CO2 emissions. The positive 

impact of exports obtained on the emissions of CO2 

is in line with work done by Dauda, Long (37) in 

the Africa, where they revealed that exports has a 

positive impact on the emissions of CO2. Likewise, 

the study done by Shahnazi and Shabani (38), 

confirmed a positive impact of exports on the 

emissions of  CO2.   

The coefficients of ENG from the SDM 

and dynamic SDM models were statistically 

significant at 1% level. Notably, on the basis of 

dynamic SDM estimates, a 1% increment in ENG 

has the likelihood of increasing CO2 emissions by 

0.203%. The possible explanation of the positive 

effect of ENG on CO2 emissions is that about 90% 

of the energy requirements in Africa countries are 

met by fossil fuel consumption (Wu et al., 2021). 

Inferring to this observation, a 1% increase in 

energy usage will result in a 0.203% step up 

𝐶𝑂2emissions in the local region. An indirect effect 

of −0.097 was also revealed in Table 6. Meaning 

that a 1% step up on energy usage in the 

neighboring countries results in a 0.097% 

diminution of 𝐶𝑂2 in the local country. 

Considering the total effect, a rise of energy usage 

by a percentage turns to increase 𝐶𝑂2 in the local 

country by 0.300%. Thus,  heightening a country’s 

own energy usage increases 𝐶𝑂2 emissions in its 

adjacent countries and so does it step up its own 

territory’s 𝐶𝑂2 emissions. The significant positive 

impact ENG on CO2 emissions is affirmed by the 

work done by Mosikari and Eita (39), where they 

ascertained a positive impact of ENG on CO2 

emissions during their study on the impact of oil 

rents on greenhouse emission for the Gulf 

Cooperation Council countries. The positive effect 

of energy usage on CO2 emissions observed is also 

in line with the work done by Hongxing, Abban 

(40) who stated that energy consumption has a 

positive impact on 𝐶𝑂2 emissions in Africa.  

The coefficients of GDP on both the 

dynamic SDM and SDM are statistically significant 

and positively affect CO2 emissions at a 10% level 

of significance. Specifically, in regards to the 

dynamic SDM model, a percentage gain in GDP 

turns to increase CO2 emissions to rise at 0.113%. 

One reason for the positive effects may be that 

African countries’ growth is still based on 

conventional fossil fuels. While there have been the 

campaign renewable energy usage, the rate of oil 

and coal usage to primary energy usage is still very 

high [41]. As a result, the usage of oil and coal 

combustion yields a significant rise in CO2 

emissions. Thus, increased economic growth could 

result in increased CO2 emissions. Inferring to the 

positive effects of GDP on CO2 emissions, it was 

concluded that the African economies must change 

their energy system toward a sustainable and clean 

structure if they want to achieve the decoupling of 

CO2 emissions from economic growth. Similarly,  

the results revealed that CO2 emissions are induced 

by GDP, with both indirect and direct effects been 

statistically significant and positive, however, the 

square of GDP had a negative impact on the 

emissions of CO2. As a result, an inverted U-

shaped was observed between GDP and the 

emissions of CO2 in the selected African countries 

and thus the EKC hypothesis is confirmed. The 

inverted U-shape obtained in this study is in line 

with the work done by Balado-Naves, Baños-Pino 

(42), where they affirmed the presence of inverted 

U-shape in Europe.  

Considering the marginal effects of other 

parameters in the model, it was revealed that IND, 

and URB all observed an indirect effects on CO2 

emissions. Meaning that IND, and URB in the local 

country and its adjacent countries will both 

heighten the emissions of CO2 in the local country. 

Thus, it was argued that spatial effect exists. With 

regards to the difference between the direct effect 

and the SDM fixed effect with the variable 

urbanization resulted in a feedback effect (0.128). 

With urbanization having a direct effect been 

statistically significant and positive, it indicates that 

urbanization is a vital factor indicator of air 

pollution in the local country. Likewise, with its 

indirect effects also been positive and significant, 

reveals that CO2 emissions in the adjacent countries 

have the possibility of affecting the local country 

by 0.069%. These outcomes are possibly because 

of the rapid expansion of the capital cities in 

countries which have resulted in more air pollution. 

The coefficient predicted for the direct effect of 

IND is statistically significant and negative, 

unveiling that a 1% increase of IND in the local 

country reduces the emissions of CO2 by  0.096%. 

As result, a country with a higher IND is inclined 

to have fewer CO2 emissions. However, the 

adjacent countries' emissions reduction by IND to 

the local country is 0.048%. 

TABLE 7 
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V. CONCLUSION AND POLICIES 

IMPLICATION 
The effects of exports and energy 

consumption on the emissions of CO2 were 

explored using the spatial econometric approaches 

a dataset of 39 countries in African from 1996 to 

2018. Thus, some important outcomes and 

conclusions based on the aforementioned results 

and discussions were as follows; The Moran’s 

index revealed a downward trend across the period 

of the study, thus indicating that the spatial 

autocorrelation is reinforced. As a result, the 

possibility of reducing the difference between 

countries’ emissions is the most effective strategy 

to reduce CO2  emissions. The findings suggest that 

increasing energy price in a focal country turns to 

reduce the country’s own CO2  emissions and also 

reduces the emissions of its adjacent countries. 

Consequently, based on the observation obtained 

during the study, some policy implications derived 

are as follows; 

(a) Countries in Africa must open up its 

trading policies and shift its competitive advantage 

in favor of cleaner production, as well as boost 

inter-country technology collaboration, including 

both emissions and production, in order to maintain 

the emissions of CO2  at a low level. Again, to 

prevent countries from becoming more polluting in 

the future, the African Union could impose 

stringent regulations, such as imposing more 

technological procedures, which will allow 

emissions to be suppressed and, ultimately, 

environmental quality to improve. (b) The African 

Union could develop appropriate policies to 

optimize energy consumption and endeavor to 

break free from the chains of traditional energy 

consumption as quickly as feasible by all its 

countries. When it comes to the impact of energy 

consumption on the emissions of CO2, traditional 

energy consumption (coal and oil) is heavily in 

most countries. Thus, the African Union should 

continue to enhance the share of the new energy 

sources in the energy consumption structure, such 

as natural gas, solar, and wind energy. As a result, 

the African Union should pay close attention to the 

growth of the renewable energy industry, 

implement appropriate preference policies, 

encourage the development of renewable energy 

industry, and enhance the proportion of renewable 

energy consumption. (c) Environmental legislation 

should have a moderating influence on energy 

structure and efficiency, and the African Union 

should take steps to support this. When it comes to 

environmental control and energy structure, the 

African Union should establish policies to 

emphasize both punishments and rewards equally. 

The African Union’s incentive policy should favor 

the creation and usage of new energy firms, thereby 

encouraging energy-saving and new energy 

consumption. Punitive measures could be utilized 

to restrain businesses’ obsolete and backward 

energy consumption behavior, while interest 

regulation (such as income redistribution) could be 

utilized to constantly optimize the energy usage 

structure. The African Union could create a market 

structure that encourages the trade of energy-saving 

technology and products, as well as clarify the 

property right of technological innovation, in order 

to encourage businesses to innovate. 
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Table 1: Descriptive statistics 

Variable Definition Mean Std.Dev Min Max 

LnCO2 CO2 emissions (kt) 8.569 1.782 3.055 12.130 

LnGDP GDP per capita (current 

US$) 

12.217 3.104 5.077 23.234 

LnENG Energy use (kg of oil 

equivalent per capita) 

6.137 1.022 -0.608 8.277 

LnEXP Exports of goods and 21.018 1.769 17.905 24.282 
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services (current US$) 

LnIND Industry value added 1.634 1.634 4.567 -1.819 

LnURB Urbanization (Total ) 11.327 2.019 5.957 14.908 

 

 

Table 2:  Correlation test results 

Variable LnCO2 LnGDP LnENG LnEXP LnIND LnURB Collinearity 

Statistics 

LnCO2 1      VIF Tolerance 

LnGDP 0.416 1     1.892 0.240 

LnENG 0.272 0.184 1    1.273 0.371 

LnEXP 0.511 0.202 0.311 1   2.024 0.493 

LnIND 0.187 -0.317 0.231 0.325 1  1.255 0.598 

LnURB 0.167 0.289 0.105 0.271 0.233 1 2.894 0.677 

 

Table 3:  Unit root test of the employed variables 

 CIPS  CADF  

 Levels  First difference  Levels  First difference  

Va

ria

ble 

Consta

nt  

Const

ant 

&Tre

nd  

Inf. Const 

ant 

Consta

nt 

&Tren

d 

Inf. Co

nsta

nt 

Const

ant 

&Tre

nd 

Inf

. 

Const 

ant 

Constan

t 

&Trend 

Inf. 

Ln

C

O2 

-1.201         -

1.302 

I (0) -3.463
a
 -3.430

a
 I (1) -

1.0

34 

-

1.162 

I 

(0) 

-4.837
a
 -4.923

a
 I (1) 

Ln

G

D

P 

-1.370 -

1.502 

I (0) -4.537
a
 -4.765

a
 I (1) -

1.2

24 

-

1.273 

I 

(0) 

-4.547
a
 -4.754

a
 I (1) 

Ln

E

N

G 

-1.411 -

1.342 

I (0) -4.966
a
 -4.647

a
 I (1) -

1.3

15 

-

1.144 

I 

(0) 

-4.779
a
 -4.870

a
 I (1) 

Ln

E

X

P 

-1.133 -

1.154 

I (0) -5.081
a
 -4.985

a
 I (1) -

1.0

77 

-

1.207 

I 

(0) 

-5.105
a
 -4.549

a
 I (1) 

Ln

IN

D 

-1.400 -

1.407 

I (0) -5.106
a
 -5.005

a
 I (1) -

1.2

41 

-

1.311 

I 

(0) 

-3.875
a
 -5.140

a
 I (1) 

Ln

U

R

B 

-1.154 -

1.093 

I (0) -4.778
a
 -4.980

a
 I (1) -

1.2

07 

-

1.312 

I 

(0) 

-4.113
a
 -4.767

a
 I (1) 

Note: 
a, b, c

indicates 1%, 5% and 10% statistical significance levels, respectively. 

 

Table 4: Moran’ I statistics for CO2 emissions 

Year Moran Z-value p-value Year Moran Z-value p-value 

1996 0.151
a
 2.401 0.000 2008 0.197

a
 3.037 0.000 

1997 0.153
a
 2.657 0.000 2009 0.231

a
 2.966 0.000 

1998 0.155
a
 3.413 0.000 2010 0.325

a
 3.041 0.000 

1999 0.158
a
 2.053 0.000 2011 0.371

a
 3.723 0.000 

2000 0.163
a
 3.430 0.000 2012 0.403

a
 2.862 0.000 

2001 0.168
a
 2.522 0.000 2013 0.471

a
 3.800 0.000 
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2002 0.174
a
 2.772 0.000 2014 0.467

b
 2.977 0.000 

2003 0.178
a
 3.331 0.000 2015 0.473

a
 2.895 0.000 

2004 0.182
b
 3.604 0.000 2016 0.492

b
 3.233 0.000 

2005 0.187
a
 2.771 0.000 2017 0.544

c
 2.996 0.000 

2006 0.191
c
 2.870 0.000 2018 0.573

a 
 2.657 0.000 

2007 0.194
a
 3.555 0.000     

Note: 
a, b, c

indicates 1%, 5% and 10% statistical significance levels, respectively. 

 

Table 5: Non-Spatial panel model 

Deteminants Pooled OLS Spatial-fixed 

effects 

Time-fixed 

effects 

Spatial and 

time-fixed effects 

Constant 0.211a
 − − − 

LnGDP −0.143b
 −0.167c

 −0.263b
 −0.218b

 

LnGDP2 −0.132a
 −0.288 −0.300 −0.317 

LnENG 0.501c
 −0.321 −0.201 −0.308c

 

LnEXP 0.146c
 0.103c

 0.022b
 0.019 

LnIND 0.320b
 0.256 0.423c

 −0.219a
 

LnURB −0.411c
 −0.337a

 −0.300 −0.317 

𝝈𝟐 0.033 0.021 0.0502 0.0321 

𝑹𝟐 7.811 7.114 7.002 6.871 

Adjusted 𝑹𝟐 7.682 6.817 6.775 6.332 

Log-likelihood 17.942 14.560 17.806 21.233 

LM spatial lag 51.024 (0.000) 31.041(0.000) 27.117(0.000) 31.282(0.000) 

Robust LM 

spatial lag 

27.603 (0.000) 15.992(0.000) 20.541(0.000) 19.210(0.000) 

LM spatial error 9.276 (0.000) 11.922(0.000) 8.986(0.000) 12.467(0.000) 

Robust LM 

spatial error 

7.450(0.000) 9.254(0.000) 9.938 (0.000) 7.965(0.000) 

The joint test of 

significance  LM 

Fixed effects Statistics df P-value 

Spatial fixed 121.367 34 0.000 
 Time fixed 157.032 31 0.000 

Note: 
a, b, c

indicates 1%, 5%, and 10% statistical significance levels, respectively. 

 

Table 6: Spatial Durbin model 

Deteminants Spatial-

fixed 

effects 

(SDM) 

Spatial-fixed 

effects (DSDM) 

Time-period 

fixed effects 

Spatial 

and 

time-

fixed 

effects 

Time-

period 

random 

effects 

Spatial 

and 

time- 

random 

effects 

W* LnCO2 0.353a
 0.201a

 0.243a
 0.189b

  0.177a
 

LnGDP −0.212b
 −0.132b

 −0.168a
 −0.177c

 −0.101a
 −0.126b

 

LnGDP2 −0.163b
 −0.108 −0.110a

 −0.098c
 −0.123a

 −0.111 

LnENG 0.417b
 0.312b

 0.122 0.131 0.125 0.133b
 

LnEXP 0.188c
 0.127

c
 0.244 0.287b

 0.312a
 0.270a

 

LnIND −0.176c
 −0.111c

 −0.103c
 −0.143c

 −0.122c
 −0.137 

LnURB 0.347c
 0.302c

 0.416a
 0.168 0.441 0.322a

 

W*LnGDP −0.173c
 −0.097c

 −0.241b
 0.322a

 0.181c
 −0.233c

 

W*LnENG −0.277a
 −0.231a

 0.205c
 0.279 0.314a

 0.189
a
 

W*LnEXP 0.301b
 0.212b

 0.199 0.321a
 0.272a

 −0.281a
 

W* LnIND 0.221b
 0.188b

 0.438c
 0.147 0.122c

 0.117c
 

W*LnURB −0.207a
 −0.132a

 −0.122 −0.181c
 −0.331a

 −0.260a
 

σ2 0.0091a
 0.0052a

 0.0039a
 0.0062a

 0.0022a
 0.0048a

 

R2 0.7038 0.8327 0.4331 0.2633 0.2153 0.5951 

Log-

likelihood 
211.029 123.806 95.617 47.533 73.227 67.147 
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  Diagnotic tests Statitiscs Df P-value 

  Hausman test                                           112.69 31 0.000 

  Wald test spatial lag                                 47.07 25 0.000 

  LR test spatial error                                  33.83 25 0.000 

Note: 
a, b, c

indicates 1%, 5% and 10% statistical significance levels, respectively. 

 

Table 7: Decomposition estimates of direct, indirect, and total effects of SDM model 

 Dynamic SDM SDM 

Variables Direct effects  Indirect 

effects 

Total 

effects 

Direct 

effects 

 Indirect 

effects 

Total 

effects 

LnGDP −0.113a
 −0.048b

 −0.161a
 −0.216

a
 −0.084

a
 −0.300

a
 

LnGDP2 −0.074b
 −0.052a

 −0.126b
 −0.113

a
 −0.022

b
 −0.135

a
 

LnENG 0.203a
 0.097c

 0.300c
 0.236

a
 0.103

c
 0.339

a
 

LnEXP 0.111c
 0.045a

 0.156b
 0.196

c
 0.072

b
 0.268

a
 

LnIND −0.096a
 −0.048c

 −0.144c
 −0.112

b
 −0.057

a
 −0.169

a
 

LnURB 0.174b
 0.069a

 0.243c
 0.193

c
 0.072

b
 0.265

a
 

Note: 
a, b, c

indicates 1%, 5% and 10% statistical significance levels, respectively. 
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